

Data Security Using Randomized Features DSURF. The best solution to stop large-
scale data theft. All Data Center operators need to know this… Reducing the scale of
attack surfaces via randomization.

DSURF provides a cloud-native storage security architecture designed for resilience and
zero-trust environments.

Prepared by: DSURF Software Development Team July 2025

Contents
1. Introduction
2. DSURF System Flow Diagram
3. Technology Overview and Benefits
4. Technical Challenges and Implementation Notes
5. Pseudocode Portable Language Agnostic Prototype
6. C Language and Compiler Source Code Prototype
7. Action Plan for Developers and Deployment
8. Conclusion

1. Introduction

DSURF (Data Security Using Randomized Features) is a revolutionary software solution
designed to prevent large-scale data theft in cloud-based environments by fragmenting,
randomizing, and isolating data storage from pointer-based reassembly keys.

DSURF disrupts traditional storage methods by:

• Randomizing data block sizes
• Distributing data blocks across multiple cloud locations
• Separating reconstruction keys from data
• Preventing client-side access to storage logic (black box design)
• Running on AWS, Azure, Google Cloud, or hybrid infrastructures

The system is seamless from the user’s perspective, yet radically more secure in its
internal logic.

2. DSURF System Flow Diagram

DSURF System Flow Diagram:

The flow diagram (above) summarizes the main aspects of DSURF file handling cycle:

• File reception
• Breaking files apart into data blocks
• Randomized storage of blocks and overflow handling
• Pointer key creation and isolation of keys from data
• File reassembly and return

3. Technology Overview and Benefits

DSURF introduces storage unpredictability and data separation and intermixing of blocks
from many different files randomized into storage locations to defeat systemic file
compromise.

Key steps:

• Files broken into blocks that may be randomly sized
• Random location generation and validation of storage locations
• Collision avoidance and / or overflow-enabled writing
• Pointer array creation and secure isolation
• Parallel processing potential for retrieval of blocks from storage
• Accelerable reassembly of files

Benefits:

Feature Benefit
Randomized block sizes Breaks pattern matching and fixed-exploit attacks
Randomized storage paths Obscures continuity of file structure

Pointer-key isolation Prevents theft of usable data without full access
Platform agnostic Compatible with AWS, Azure, GCP
Black box logic Clients can’t inspect or replicate DSURF internals
Parallel processing Provides acceleration potential for highspeed performance

4. Technical Challenges and Implementation Notes
Challenge Solution
Ensuring uniqueness of storage
locations

Use cryptographic random generation + collision
check

Cloud API differences Abstract through drivers per platform (S3, Blob,
GCS)

Handling overflow blocks Modular logic to track multi-segment blocks
Preventing pointer leakage Store separately, encrypted, in different network

Challenge Solution
paths

Performance of reassembly Parallel block fetch and memory buffering

5. Pseudocode Portable Language Agnostic Prototype
MODULE DSURF_Main

 PROCEDURE StoreFile(filePath, keyStorageLocation)
 DECLARE fileBlocks, pointerArray
 fileBlocks ← SplitFileIntoBlocks(filePath)

 FOR EACH block IN fileBlocks DO
 DECLARE location
 REPEAT
 location ← GenerateRandomStorageLocation(block)
 UNTIL CheckStorageCollision(location, block.SIZE) = FALSE

 IF IsLocationSufficient(location, block.SIZE) THEN
 WriteBlock(location, block)
 pointerArray.ADD(location)
 ELSE
 DECLARE part1, part2
 (part1, part2) ← SplitBlockForOverflow(block, location.SIZE)
 WriteBlock(location, part1)
 overflowLocation ← GenerateOverflowLocation(part2)
 WriteBlock(overflowLocation, part2)
 pointerArray.ADD((location, overflowLocation))
 END IF
 END FOR
 StorePointerKey(pointerArray, keyStorageLocation)
 END PROCEDURE

 PROCEDURE RetrieveFile(pointerKey, destinationPath)
 DECLARE reassembledBlocks
 FOR EACH pointer IN pointerKey DO
 IF pointer IS TUPLE THEN
 part1 ← ReadBlock(pointer[0])
 part2 ← ReadBlock(pointer[1])
 block ← MergeBlockParts(part1, part2)
 ELSE
 block ← ReadBlock(pointer)
 END IF
 reassembledBlocks.ADD(block)
 END FOR
 ReassembleFile(reassembledBlocks, destinationPath)
 END PROCEDURE

END MODULE

FUNCTION SplitFileIntoBlocks(filePath)
 [Reads file and splits into randomly sized blocks]
 RETURN listOfBlocks
END FUNCTION

FUNCTION GenerateRandomStorageLocation(block)
 [Returns random path or cloud object location based on size]
 RETURN location
END FUNCTION

FUNCTION CheckStorageCollision(location, size)
 [Checks if location is already used or occupied]
 RETURN BOOLEAN
END FUNCTION

FUNCTION IsLocationSufficient(location, size)
 [Checks if block fits fully in location]
 RETURN BOOLEAN
END FUNCTION

PROCEDURE WriteBlock(location, block)
 [Writes the block to cloud storage]
END PROCEDURE

FUNCTION SplitBlockForOverflow(block, maxSize)
 [Splits block into part1 and overflow part2]
 RETURN (part1, part2)
END FUNCTION

FUNCTION GenerateOverflowLocation(block)
 [Generates a new location for overflow part]
 RETURN location
END FUNCTION

FUNCTION ReadBlock(location)
 [Reads block from storage]
 RETURN block
END FUNCTION

FUNCTION MergeBlockParts(part1, part2)
 [Merges partial block and overflow]
 RETURN block
END FUNCTION

PROCEDURE ReassembleFile(blocks, destinationPath)

 [Writes blocks into a single output file]
END PROCEDURE

PROCEDURE StorePointerKey(pointerArray, keyStorageLocation)
 [Stores pointer list to separate key infrastructure]
END PROCEDURE

6. C Language and Compiler Source Code Prototype
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_BLOCK_SIZE 4096
#define MIN_BLOCK_SIZE 512
#define MAX_POINTERS 10000

typedef struct {
 char *data;
 size_t size;
} Block;

typedef struct {
 char *location;
 char *overflow_location; // NULL if unused
} Pointer;

typedef struct {
 Pointer pointers[MAX_POINTERS];
 int count;
} PointerArray;

// Function prototypes
Block *split_file_into_blocks(const char *filepath, int *num_blocks);
char *generate_random_location(size_t size);
int check_storage_collision(const char *location, size_t size);
int is_location_sufficient(const char *location, size_t size);
void write_block(const char *location, Block block);
void write_overflow(const char *location, Block block);
void store_pointer_key(PointerArray *key, const char *key_storage);
Block read_block(const char *location);
Block merge_blocks(Block part1, Block part2);
void reassemble_file(Block *blocks, int count, const char
*output_path);

void store_file(const char *filepath, const char *key_storage) {
 int i, num_blocks;
 PointerArray pointer_array = { .count = 0 };
 Block *blocks = split_file_into_blocks(filepath, &num_blocks);

 for (i = 0; i < num_blocks; i++) {
 char *loc = NULL;
 do {
 loc = generate_random_location(blocks[i].size);
 } while (check_storage_collision(loc, blocks[i].size));

 if (is_location_sufficient(loc, blocks[i].size)) {
 write_block(loc, blocks[i]);
 pointer_array.pointers[pointer_array.count++] = (Pointer){
loc, NULL };
 } else {
 size_t half = blocks[i].size / 2;
 Block part1 = { blocks[i].data, half };
 Block part2 = { blocks[i].data + half, blocks[i].size -
half };

 write_block(loc, part1);
 char *overflow_loc = generate_random_location(part2.size);
 write_block(overflow_loc, part2);
 pointer_array.pointers[pointer_array.count++] = (Pointer){
loc, overflow_loc };
 }
 }

 store_pointer_key(&pointer_array, key_storage);
 for (int i = 0; i < num_blocks; i++) {
 free(blocks[i].data);
 }
 free(blocks);
}

void retrieve_file(PointerArray *key, const char *output_path) {
 Block *blocks = malloc(sizeof(Block) * key->count);

 for (int i = 0; i < key->count; i++) {
 Block part1 = read_block(key->pointers[i].location);

 if (key->pointers[i].overflow_location != NULL) {
 Block part2 = read_block(key-
>pointers[i].overflow_location);
 blocks[i] = merge_blocks(part1, part2);

 } else {
 blocks[i] = part1;
 }
 }

 reassemble_file(blocks, key->count, output_path);
 for (int i = 0; i < key->count; i++) {
 free(blocks[i].data);
 }
 free(blocks);
}

7. Action Plan for Developers and Deployment

Includes step-by-step actions for:

• Compiling the DSURF core
• Building platform drivers
• Configuring secure storage zones
• Deploying in test infrastructure
• Benchmarking and hardening

Deployment Roadmap:

Phase 1 – Compile core DSURF modules (2 days)

Phase 2 – Build platform-specific API drivers (3–5 days)

Phase 3 – Configure secure key storage zones (3 days)

Phase 4 – Deploy in test infrastructure (1 week)

Phase 5 – Benchmarking and performance tuning (1 week)

Phase 6 – Hardened deployment in live cloud (2 weeks)

8. Conclusion

DSURF changes the game in cloud data protection. With strong randomization, separation
of concerns, and practical performance, it meets the needs of modern data center
operators.

Developer Steps
• Build, compile, and test modules
• Integrate with target cloud
• Deploy in container or region

Customer Benefits
• Blocks mass data theft
• Aligns with zero-trust strategy
• Enhances platform security

Partner Invitation

We invite:

• Cloud providers, defense agencies, and cybersecurity firms
• Data center operators and SaaS developers
• Interested partners and investors

Contact: dsurf@systemsdi.com

Web: https://SystemsDesignInnovation.com/dsurf/

All rights reserved. © 2005 Systems Design Innovation LLC. DSURF is a newly patented
solution from US 17/339,935 A invented by Mark Taylor.

Systems Design Innovation LLC
301 West Broad Street
Suite 226
Falls Church
VA 22046

mailto:dsurf@systemsdi.com
https://systemsdesigninnovation.com/dsurf/
https://systemsdi.com/dsurf/dsurf_patent.pdf
https://systemsdi.com/dsurf/301

