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TRIPLE: Time-Randomizing Interface 
Protocol Language Encryption 

Next Generation Secure Communications 

Breaking the boundaries of key-based encryption through polymorphic obfuscation. By 

decoupling itself from the constraints of established cryptographic traditions, TRIPLE 

evolves as a platform-agnostic solution that adapts to the rapidly shifting landscape of 

cybersecurity challenges. Its underlying architecture is intentionally modular, allowing 

seamless integration into a wide range of digital ecosystems—from lightweight IoT devices 

to enterprise cloud infrastructures—without imposing prohibitive overhead. 

The protocol is also engineered with interoperability in mind. The annexed flow diagrams 

illustrate how TRIPLE can be embedded directly within browser platforms, ensuring secure 

transmission even in environments traditionally considered vulnerable. This flexibility 

means organizations can deploy TRIPLE alongside, or even in place of, existing security 

layers, reducing reliance on brittle, math-bound ciphers and hedging against emergent 

quantum threats. 

Furthermore, TRIPLE’s unique pointer array mechanism is complemented by an agile 

development approach, supporting continuous updates and rapid adaptation to new attack 

vectors. Its ephemeral, non-persistent logic minimizes the risk window for adversaries, 

while its session continuity feature bolsters usability for legitimate users. 

TRIPLE is a newly patented solution from US 11,956, 352 B2 invented by Mark 
Taylor. 
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1. Introduction 
TRIPLE (Time-Randomizing Interface Protocol Language Encryption) is a quantum-

resistant encryption method that creates a unique and constantly evolving language 

protocol between two systems. It transforms the landscape of communication security by 

removing reliance on fixed keys and instead implementing randomized periodic key-

morphing and refreshing, or replacement, encoding schemes using pointer arrays and 

shared seed data. 

2. TRIPLE System Flow Diagrams 
Refer to separately attached diagrams illustrating TRIPLE protocol operation, pointer 

encryption, sender-receiver exchange, and key generation logic (see Annex A). 
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TRIPLE’s functionality is best illustrated using the four key flow diagrams described below: 

 

(a) **TRIPLE Key Creation Diagram** – Depicts how session keys are generated from input 

(pre-key), using salting, hashing, and derivation functions. This allows secure and 

recoverable key bootstrapping.  

(b) **TRIPLE Protocol Overview Diagram** – Shows how two devices ping to confirm 

readiness, create a shared pointer array, and enter an encrypted session that is periodically 

reset based on time or message volume. 

 

(c) **TRIPL Pointer Array Encryption Diagram** – Illustrates how encryption is performed 

using randomized pointers into a shared array. The array is refreshed or rotated at session 

reset intervals. Pointers are stored and restored for continuity. 

 

(d) **Sender and Receiver Diagram** – Describes the message flow: Sender encrypts a 

message using its TRIPLE array, transmits it to the receiver, which decrypts using the 

synchronized array. 

 

3. Technology Overview and Benefits 
TRIPLE is a protocol-level enhancement that replaces or compliments static encryption 

keys with randomly generated languages that can be set to evolve randomly over time and / 

or use randomly timed whole key replacements. It uses pointer-based referencing into 

shared seed data arrays to generate encrypted representations of characters, words, or 

phrases. 

4. Technical Challenges and Implementation Notes 
The known challenges and TRIPLE's responses, including pointer synchronization, protocol 

reset, session validation, and memory security. 

Technical Challenge TRIPLE Solution 

Pointer Synchronization Shared random seed and ping-validation protocol. 

Session Reset Logic Timed or traffic-volume-based array resets with 
autorotation. 

Session Validation Hash of pointer array and device ID timestamps 
ensure resync. 
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Secure Storage Use volatile memory and Rust-based sandboxed 
modules. 

Reconnection Handling Saved pointer arrays (Figure 1C) enable resumption. 

5. Pseudocode Prototypes 
The following pseudocode outlines the structure and initialization process for the TRIPLE 

protocol's main module. This module is responsible for coordinating secure sessions 

between two devices by constructing a TRIPL array based on a predefined set of seed data. 

Each element in the TRIPL array is derived using a pointer generation function, ensuring 

uniqueness and randomness throughout the session. 

Comparative Overview of Two TRIPLE_Main Prototypes: 
 
The provided pseudocode describes two versions of a module named TRIPLE_Main, both 
focused on session management and secure message encryption/decryption between two 
devices. Each version employs a TRIPL (a list of pointers or values), initialized from a seed, 
and uses this structure for message operations. Below, we summarize and compare their 
structure and logic. 
 
First Version of TRIPLE_Main 
 
- MAX_TRIPL_LENGTH: A constant set to 1024, defining the length of the TRIPL array. 

 
InitializeSession(DeviceA, DeviceB): 
- Loads seed data and initializes an empty TRIPL list. 
- Generates TRIPL by iterating from 0 to MAX_TRIPL_LENGTH - 1, populating it using 

GeneratePointer(seedArray, i). 
- The TRIPL is stored for session continuation. 
- Returns the TRIPL. 
 
EncryptMessage(message, TRIPL): 
For each character in the message, it maps the character to an index, retrieves the 
corresponding pointer in TRIPL, and adds it to the encrypted list. 
 
DecryptMessage(encrypted, TRIPL): 
For each pointer in the encrypted list, reverses the mapping using TRIPL to retrieve the 
original character and reconstructs the message. 
 
CheckResetTimer(): 
If the session is expired, calls InitializeSession to renew TRIPL. 
If not expired, rotates pointers in the current TRIPL. 
 
Second Version of TRIPLE_Main 
 
StartSession(DeviceA, DeviceB): 
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- Initializes an empty TRIPL and loads seed data. 
- Iterates from 1 to MAX_TRIPL_LENGTH, generating random pointers using 

GetRandomPointer(seedArray). 
- Exchanges each generated value between DeviceA and DeviceB, then adds it to TRIPL. 
- Returns the TRIPL. 
 
EncryptMessage(message, TRIPL): 
For each character, looks up a pointer in TRIPL and adds it to the encrypted list. 
 
DecryptMessage(encrypted, TRIPL): 
For each pointer, performs a reverse lookup in TRIPL to retrieve the original character, 
reconstructing the message. 
 
Comparison and Key Differences 
Session Initialization: 
- The first version uses InitializeSession starting at index 0 and iterates to 

MAX_TRIPL_LENGTH - 1, while the second version uses StartSession starting at index 1 
up to MAX_TRIPL_LENGTH. This subtle difference changes the number of iterations by 
one. 

- The first version uses GeneratePointer with an explicit index, while the second uses 
GetRandomPointer without a direct index, suggesting a different approach to pointer 
generation. 

- The second version includes ExchangeValue between DeviceA and DeviceB during 
TRIPL generation, emphasizing communication or key exchange, whereas the first does 
not. 

 
Message Encryption/Decryption: 
The mapping and reverse mapping methods differ slightly by name: MapCharToIndex and 
LookupPointer for encryption; ReverseMap and ReverseLookup for decryption. 
Functionally, both achieve the transformation of characters to pointers and vice versa. 
 
Session Maintenance: 
The first version contains CheckResetTimer to handle session expiration and pointer 
rotation; the second version lacks explicit timer reset or pointer rotation logic. 
 
Summary 
 
Both versions of TRIPLE_Main aim to establish a shared session context and provide secure 
procedures for encrypting and decrypting messages using a pointer-based lookup table 
(TRIPL). The primary differences lie in session initialization details, pointer generation, and 
session lifecycle management. Each implementation presents a variant on how sessions 
might be initiated and maintained for secure communication between devices. 
 

MODULE TRIPLE_Main 

  CONSTANT MAX_TRIPL_LENGTH ← 1024 

 

  PROCEDURE InitializeSession(DeviceA, DeviceB) 

    seedArray ← LoadSeedData() 

    TRIPL ← [] 
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    FOR i FROM 0 TO MAX_TRIPL_LENGTH - 1 DO 

      value ← GeneratePointer(seedArray, i) 

      TRIPL.ADD(value) 

    END FOR 

    StoreTRIPL(TRIPL) // Enables session continuation 

    RETURN TRIPL 

  END PROCEDURE 

 

  PROCEDURE EncryptMessage(message, TRIPL) 

    encrypted ← [] 

    FOR EACH char IN message DO 

      index ← MapCharToIndex(char) 

      pointer ← TRIPL[index] 

      encrypted.ADD(pointer) 

    END FOR 

    RETURN encrypted 

  END PROCEDURE 

 

  PROCEDURE DecryptMessage(encrypted, TRIPL) 

    message ← [] 

    FOR EACH pointer IN encrypted DO 

      char ← ReverseMap(TRIPL, pointer) 

      message.ADD(char) 

    END FOR 

    RETURN message 

  END PROCEDURE 

 

  PROCEDURE CheckResetTimer() 

    IF SessionExpired() THEN 

      TRIPL ← InitializeSession(DeviceA, DeviceB) 

    ELSE 

      RotatePointers(TRIPL) 

    END IF 

  END PROCEDURE 

END MODULE 

 

MODULE TRIPLE_Main 

  PROCEDURE StartSession(DeviceA, DeviceB) 

    TRIPL ← [] 

    seedArray ← LoadSeedData() 

 

    FOR i FROM 1 TO MAX_TRIPL_LENGTH DO 

      value ← GetRandomPointer(seedArray) 

      ExchangeValue(DeviceA, DeviceB, value) 

      TRIPL.ADD(value) 
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    END FOR 

    RETURN TRIPL 

  END PROCEDURE 

 

  PROCEDURE EncryptMessage(message, TRIPL) 

    encrypted ← [] 

    FOR EACH char IN message DO 

      pointer ← LookupPointer(TRIPL, char) 

      encrypted.ADD(pointer) 

    END FOR 

    RETURN encrypted 

  END PROCEDURE 

 

  PROCEDURE DecryptMessage(encrypted, TRIPL) 

    message ← [] 

    FOR EACH pointer IN encrypted DO 

      char ← ReverseLookup(TRIPL, pointer) 

      message.ADD(char) 

    END FOR 

    RETURN message 

  END PROCEDURE 

END MODULE 

 

6. C-Code Prototype 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <time.h> 

 

#define MAX_TRIPL_LENGTH 256  // One entry per ASCII character 

#define OBFUSCATION_MASK 0xAB // XOR mask for reversible 

transformation 

 

typedef struct { 

    char character; 

    char encoded_value[5]; // e.g., "x5F" 

} TRIPLPointer; 

 

typedef struct { 

    TRIPLPointer map[MAX_TRIPL_LENGTH]; 

    int count; 

    time_t start_time; 

} TRIPLArray; 

 

// Build deterministic ASCII map with encoded representations 

TRIPLArray create_tripl_array() { 

    TRIPLArray array; 
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    array.count = MAX_TRIPL_LENGTH; 

    array.start_time = time(NULL); 

 

    for (int i = 0; i < MAX_TRIPL_LENGTH; i++) { 

        array.map[i].character = (char)i; 

        snprintf(array.map[i].encoded_value, 

sizeof(array.map[i].encoded_value), "x%02X", i ^ OBFUSCATION_MASK); 

    } 

 

    return array; 

} 

 

// Encrypt using direct ASCII index (deterministic mapping) 

void encrypt_message(const char *message, TRIPLArray *array, char 

**encrypted) { 

    int i = 0; 

    while (message[i] != '\0') { 

        unsigned char index = (unsigned char)message[i]; 

        encrypted[i] = strdup(array->map[index].encoded_value); 

        i++; 

    } 

    encrypted[i] = NULL; // Mark end of encrypted sequence 

} 

 

// Decrypt using reverse lookup (linear scan) 

void decrypt_message(char **encrypted, TRIPLArray *array, char 

*output) { 

    int i = 0; 

    while (encrypted[i] != NULL) { 

        for (int j = 0; j < array->count; j++) { 

            if (strcmp(encrypted[i], array->map[j].encoded_value) == 

0) { 

                output[i] = array->map[j].character; 

                break; 

            } 

        } 

        i++; 

    } 

    output[i] = '\0'; // Proper null-termination 

} 

 

// Demonstration 

int main() { 

    TRIPLArray tripl = create_tripl_array(); 

    const char *original = "HELLO TRIPLE!"; 

    char *encrypted[1024]; 

    char decrypted[1024]; 

 

    encrypt_message(original, &tripl, encrypted); 

    printf("Encrypted:\n"); 

    for (int i = 0; encrypted[i] != NULL; i++) { 

        printf("%s ", encrypted[i]); 

    } 

    printf("\n"); 
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    decrypt_message(encrypted, &tripl, decrypted); 

    printf("Decrypted: %s\n", decrypted); 

 

    for (int i = 0; encrypted[i] != NULL; i++) { 

        free(encrypted[i]); 

    } 

 

    return 0; 

} 

 

 

7. Action Plan for Developers and Deployment 
 

Phase 1 – Specification & Design (Month 1) 

- Finalize pointer logic and reset triggers 

- Confirm message format and protocol framing 

 

Phase 2 – Core Implementation (Months 2–3) 

- Build TRIPLE engine in Rust with WebAssembly support 

- Construct UI shell for browser extension 

- Add pointer mutation and storage/resume logic 

 

Phase 3 – Testing & Validation (Months 4–5) 

- Test dropped session recovery using Figure 1C logic 

- Simulate cross-device pointer sharing 

- Harden against memory leaks and sync errors 

 

Phase 4 – Deployment & Pilots (Month 6+) 

- Deploy to Chrome Web Store and Edge Add-ons 

- Launch enterprise pilots and feedback loop 
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8. Red Zone Threat Analysis 
TRIPLE anticipates threats from both classical and quantum attackers, removing fixed key 

logic, avoiding pattern-based encryption, and producing cryptographically meaningless 

outputs even when intercepted. 

9. Unlike Regular Math-based Encryption A Feature Not a Bug! 
TRIPLE does not conform to conventional encryption frameworks based on prime 

factorization, elliptic curves, or modular arithmetic. It is not built around a fixed key, a 

cipher block, or a published algorithmic primitive. As a result, some automated tools and 

critics may dismiss it as “not suitable for real-world encryption.” 

 

That potential for critique, however, would arise from misunderstanding the TRIPLE 

architecture entirely. Because TRIPLE works by creating a shared, randomized pointer 

array between two communicating devices. Each pointer acts as a cipher mapping for 

characters or bits. This shared map is: 

 

- Created mutually, not transmitted or stored 

- Reset periodically, based on time or message volume 

- Ephemeral, residing in volatile memory only 

- Restorable, allowing secure session continuity without rekeying 

 

TRIPLE creates a stream of synchronized, transient, polymorphic ciphers. This means: 

 

- There is no fixed decryption logic for an attacker to reverse-engineer 

- Intercepted data is meaningless without access to the current pointer array 

- There is no key to steal or mathematically factor 

- There is no persistent pattern to discover, since the cipher logic resets 

- It resists both brute force and quantum modeling, because TRIPLE is not based on 

algebraic math — it’s based on entropy, mutation, and obfuscation. 

 

Conventional wisdom is to evaluate encryption against standard patterns: AES, RSA, ECC, 

OpenSSL, etc. TRIPLE is none of those. It’s deliberately orthogonal. Based on the math-based 

encryption types that are all vulnerable to intelligence services’ capabilities already. Which 

vulnerability will only worsen as quantum computing and artificial intelligence-based code-

breaking and decryption capabilities increase and proliferate into the hands of non-state 

actors. The whole point of the approach of TRIPLE is driven by the inventor’s insight that 

this piece of conventional wisdom is going obsolete soon. This is not a bug in technology. It’s 

the point of it. 

 

TRIPLE is designed as a new category of encryption, built not on math, but on logic, logical-

mutation, language divergence, and session-specific context. It’s more akin to a 
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synchronized randomized obfuscation engine than a conventional cipher — and that’s what 

gives it its strength. 

10. Conclusion 
TRIPLE is a fundamentally new direction for data security. It addresses real-world 

encryption shortfalls, may future proof communications now against future decryption 

risks, provides resilience against modern adversaries, and enables scalable secure 

communication. Because text-based processing is not resource-hungry TRIPLE is not 

processor-heavy unlike pure math-based encryption. So that TRIPLE does not add 

significantly to the demand for computing resources or to operating costs. 

11. Partner and Investor Opportunities 
We welcome partnerships and investment from cloud vendors, defense contractors, 

communication platforms, and cybersecurity stakeholders who recognize the need for zero-

trust, future-proof and quantum resistant messaging. 
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Annex A – Flow Diagrams (for detail see patent US 11,956, 352 B2) 
 

This annex defines the browser integration strategy to ensure TRIPLE remains platform-

flexible, standards-compliant, and quantum-resistant even in web-native contexts. 

 

TRIPLE Key Creation Diagram 

 

 

https://systemsdesigninnovation.com/triple/patent.pdf
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TRIPLE Protocol Overview Diagram 
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TRIPL Pointer Array Encryption Diagram 
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TRIPLE Sender and Receiver Diagram 
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Annex B – Signal Architecture & Language Analysis 
Annex B – Signal Architecture & Language Analysis 

 

1. Signal-Android 

- Languages Used: Java (core), Kotlin (partial), XML (UI layouts), C/C++ (via JNI) 

- Rationale: Java offers wide compatibility and a mature ecosystem; Kotlin brings modern 

safety and development advantages. 

- TRIPLE Recommendation: Use Kotlin for new components (e.g., chat UI, TRIPLE controls); 

retain Java only where legacy libraries are required. 

 

2. Signal-Desktop 

- Languages Used: TypeScript (main logic), HTML/CSS (UI), Electron (runtime environment 

using Chromium + Node.js) 

- Rationale: Enables rapid cross-platform UI development using web technologies; Electron 

simplifies deployment for Windows, macOS, and Linux. 

- TRIPLE Recommendation: Maintain TypeScript + Electron for initial versions; consider 

Tauri or Rust-native GUI options in future iterations if performance needs grow. 

 

3. Signal Core Cryptographic Engine (libsignal) 

- Language: Rust 

- Rationale: Rust provides memory safety, performance, and reliability, ideal for encryption 

modules. 

- TRIPLE Recommendation: Use Rust for TRIPLE’s core encryption logic — pointer arrays, 

TRIPL negotiation, salting/hashing, session state validation. 

 

4. Language Suitability Review 

All of Signal’s chosen languages remain optimal for their platforms in 2025. TRIPLE will 

adopt them where appropriate to: 

- Stay compatible with industry toolchains 

- Ensure developer familiarity 
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- Maintain performance and security 

 

5. Platform Alignment Summary 

 

Platform Signal Stack TRIPLE 
Recommendation 

Android Java, Kotlin, XML Kotlin preferred, Java-
compatible 

Desktop TypeScript, Electron TypeScript + Electron 

Crypto Core Rust Rust 

 

6. Development Strategy 

TRIPLE will design legally distinct source code that is functionally similar to Signal, but not 

copied. By studying Signal’s: 

- Message flow architecture 

- UI component structures 

- Session management and sync logic 

...we can build a TRIPLE-native equivalent that matches its capabilities while adding next-

generation encryption features (e.g., pointer-based language, salting, and quantum 

resistance). 

 

7. Purpose of This Annex 

This annex establishes the architectural compatibility of TRIPLE with known secure 

messaging platforms and outlines a migration path from reference implementation to 

proprietary, scalable, and defendable software. 
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Annex C – TRIPLE Web Browser Integration Strategy 
 

1. Objective 

To develop a TRIPLE-powered peer-to-peer secure chat system as a browser extension for 

Chrome, Edge, and compatible browsers. This system will enable TRIPLE-based encryption 

directly in the browser environment, layered over existing HTTPS connections or operating 

natively through bootstrapped session protocols. 

 

2. Operating Modes 

TRIPLE browser extensions can operate in two secure modes: 

- Bootstrap via HTTPS (Figure 1 Logic): Initiates secure TRIPLE handshake within an 

HTTPS-protected session, using it as a launching point. 

- Resume from Persistent TRIPL Arrays (Figure 1C Logic): Resumes encryption using saved 

session state for long-term or dropped/reconnected communications. 

 

3. Architecture 

- Frontend (UI): HTML, TypeScript, CSS (extension popup and chat interfaces) 

- Extension Scripts: Browser APIs, secure local storage, message listeners, TRIPLE logic 

overlay 

- Encryption Core: WebAssembly-compiled Rust module implementing TRIPLE’s pointer 

array engine 

- Key and Session Handling: Salted and hashed session fingerprints, ephemeral or persistent 

TRIPL restoration 

 

4. Compatibility Goals 

- Seamless overlay within Gmail, LinkedIn, WhatsApp Web, Slack, or other web-based 

environments 

- Full keyboard input and copy/paste integration 

- Minimal memory footprint and sandboxed operations 
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5. Security Considerations 

- No exposure of TRIPL arrays to browser sync or cloud backups 

- Local keying and mutation logic never exits runtime memory 

- Cross-origin safeguards against injection or manipulation 

 

6. Future Capabilities 

- Extend to handle encrypted attachments and eventually TRIPLE-based image encryption 

- Integrate real-time sync or message caching for low-connectivity scenarios 

 

7. Deployment Format 

- Chrome Web Store release 

- Edge Add-ons store compatibility 

- Self-hosted CRX files for custom enterprise deployments 

 

 

 

Annex D – Signal Open-Source Code References 
 

- Signal-Desktop: https://github.com/signalapp/Signal-Desktop 

- Signal-Android: https://github.com/signalapp/Signal-Android 

-  libsignal: https://github.com/signalapp/libsignal 

 

https://github.com/signalapp/Signal-Desktop
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/libsignal

